作为不定形的耐火材料,耐火浇筑料经常使用在形状和表面复杂的部位,因为这些部位不宜用于耐火砖进行砌筑,且很难保证工作状态下的稳定。
浇注料是借助于固定在钢壳体上的扒钉与壳体结合在一起的,水泥行业中,常用的耐热钢扒钉有V型和Y型两种,常用的材料有1Cr18Ni19Ti和Cr25Ni20等。
一般部位,钢扒钉可使用材质为1Cr18Ni19Ti的钢筋制造,在材质的选择上,除考虑材料的高温强度外,也应考虑材料由于高温条件下的氧化锈蚀而带来的破坏性膨胀。部分低温部位虽然普通钢筋可满足工作温度的强度要求,但氧化腐蚀的氧化皮却有可能产生巨大的膨胀应力,把耐火浇筑料胀坏。特别是高温区,如喷煤管和窑口部位,应采用高温强度较高的Cr25Ni20牌号耐热钢制作扒钉。
耐火浇注料衬料中扒钉的尺寸及定位
在平面上,扒钉是按照两个边长大约为500mm的正方形系统分布的,其中任意一个处于正方形脚上的扒钉,同时又位于另一个正方形的中心,两个系统的扒钉扩展面相互垂直。对于不同形状的表面,也要按照平面上扒钉的分布去考虑,但应同时考虑衬料设计和该处衬料在生产过程中所售的负荷,这或许将造成扒钉的排列方向与平面有所不同及扒钉间距的缩短。除非在最终衬料涂上有特殊说明,否则扒钉都是与壳体焊接。
(扒钉布置示意图)
扒钉尺寸必须适宜,扒钉头部应有一定的开度,以保证足够的抗剥落影响区域,扒钉应保持一定的高度,高度不足,表面的浇筑料得不到有效保护而先行脱落。扒钉过高,造成早期烧损和磨蚀,从而过早地失去对耐火材料的强化功能。应在扒钉头部有25~30mm后的保护层。
浇注之前,所有扒钉上应有涂沥青漆或缠绕塑料薄膜,这些材料烧损后出现的自由空间可确保受热膨胀的扒钉不会对浇筑料造成破坏。
扒钉长度与浇注料厚度
(扒钉长度与浇注料厚度/mm)
(扒钉高度与耐火浇注料厚度)
浇注区的划分和控制缝的留设
1、耐火浇注料的收缩和膨胀
耐火浇注料在第一次加热过程中,在50℃~200℃时脱水和900℃~1000℃烧结时会出现两次体积收缩。在其他温度范围内,加热将使浇注料膨胀。经过第一次加热后,浇注料一般不再收缩。
为防止体积变化产生的应力对浇注料造成破坏,衬料必须划成对角线尺寸不大于1.5m的小区,分区浇注并在每个浇注区的分界线处留出膨胀和收缩的缝隙。
2、膨胀缝的影响范围
缝隙的大小应保证各个小区内的浇筑料自由膨胀,位置合适的膨胀缝同时也可以成为控制缝。在高温区段(>600℃)应根据膨胀缝的间距,将膨胀缝的宽度控制在3~4mm。膨胀缝和控制缝设置在距离凸角200mm上下的平面上,而不呢馆设置在凸角和尖锥中。膨胀缝和控制缝两侧的浇筑料开裂趋势较大,可适当加大扒钉密度。
3、膨胀缝的宽度控制
膨胀缝的宽度与工作温度和控制的线长度有关。温度较高,控制的长度较长,膨胀缝可适当加宽。在温度相对低的区域(<400℃),设备外壳可直接使用浇筑料,不许隔热保温层。在这样的条件下,每隔1.5m插入2mm厚的纸板或塑料膜,就可满足膨胀空间的要求。
4、膨胀缝位置的优选
在确定膨胀位置时,应一并考虑振捣工艺的合理安排,缝隙一侧浇筑料的振捣不应影响已浇筑振捣完毕并开始初步硬化的浇筑料。膨胀缝的位置避开受力部位,炉体骨架和内衬的孔洞。在具有复杂形状的区域,如边角,凸起等,应设置与其表面相适应的膨胀缝于凸起角和曲率半径小的曲面处,当两个浇筑面相交成凹角时,应在凹角处设一┖型膨胀缝。
衬料图应显示出主要部位的膨胀缝的位置和尺寸,若浇筑料的工作温度超过1200℃,就要设置宽度超过3mm的膨胀缝,并在其中塞入纤维毡。
5、控制缝的设置
浇筑料由于收缩会造成开裂,都需要在凸角部位约200mm处设置控制缝,这样就可以让收缩开裂缝发生在预定的,比较安全的部位。控制缝的设置,可在预定的缝隙部位塞入纸、石蜡或薄木板等,在高温条件下可燃或流失的材料进行浇筑,这些可燃物灼烧或流失后,就留下控制缝。
控制缝必须设置在相邻的扒钉中间,距两侧的扒钉大致相等。在连续曲面,圆锥表面和管子上设置,应在不能控制收缩风险的平面及曲面上设置。应避免在不能设膨胀缝的区域设置,如在小浇筑面和凸角处设置膨胀缝。
来源:找耐火材料网